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It is shown that the fundamental structure of Galois switching functions follows
naturally from that of Boolean switching functions. An expanded formula for deriving
multinomial Galois switching functions is provided with illustrations of its application.

l. Introduction

Due to its simple and systematic properties, the Boolean field and its algebra have been applied successfully to binary-valued
logic. Since the Galois or finite field is the natural extension of the Boolean field, more and more researchers have become
interested in utilizing finite fields in the design of multivalued logics. It will be evident later that multivalued logic, using Galois
field theory or algebra, is now as realizable as Boolean switching logic. This may be considered to be a consequence of the recent
efforts of Menger (Ref. 1), Benjauthrit and Reed (Ref. 2), and Pradhan (Ref. 3). The second paper provided a systematic method
of deriving any multinomial Galois switching functions via what is referred to as “Galois differences.” The third paper furnished
still another expansion for obtaining such switching functions.

Though both methods provide a systematic technique for deriving a unique Galois switching function from a given truth table
description of the function, each requires tedious computation. Specifically, the first method often contains many redundant
terms in its formulation, whereas the second method requires a great number of multiplications and additions. By some algebraic
manipulations, an expanded formula is obtained which combines the best features of both methods. This formula enables one to
compute the coefficients of the desired function more directly and probably with less effort.

Il. Summary of Existing Results

Since most of the basic properties of Galois fields have been given in the literature, they will not be described here. Instead, use
will be made of these properties as necessary and the reader will be directed to the appropriate references. Two basic theorems are
now stated.
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Let g = p” be the order or the number of field elements of Galois field GF(q) whose field power is n and characteristic is a
prime p. Denote the set of all nonzero field elements by GK(q). Also, let the symbol 2 signify the sum of all elements over F.
Then, according to Ref. 2, one has the following theorem.

Theorem 1. For every function F: GF(p™)™ » GF(p"), there exists a unique functionf: {0,1, - - -, p" - 1} > GF(p") such that

k
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The function F (xl, *++, x,,) has the following “power series” expansion:

F(x1,~'-,xm)=F(Q)+|:A F(Q)]xl+"-+[AF(Q)] X,

1 m

+t] AFQ@ X2+ -+ A FQ|x2,+---+] A FO|x]
x% x2 xq
m m

*1%2

+[A<2>F(Q)] x1x2+"~+[ 2D F@fxq_ x
x

q x4
m-1"m

+[ Al -F(Q)jlxl...xm+...+ A F (0) x({...xtrln
X, . q

m qu M xm
where F(O)=F(, ---,0).
Now, from Ref. 3, the next theorem follows.
Theorem 2. Any function F(x , -+, x, ) can be expressed as
m
Flx,x,)= 22,80, ) F O, )
GF(q)
where
m
gt )= I -G~ '), YE€GF(@) )
i=1

Also from Ref. 3, we obtain the following lemmas:

Lemma 1. The sum of ith power of nonzero elements over the field GF (¢) is null for 0 <i<q - 1 and unity fori =g - 1. Mathe-
matically,

0, for0<i<g-1 (3a)
-1, fori=q-1 (3b)

Y -

GF' (@

Note that Lemma 1 is not restricted to g > 2 here because, for ¢ = 2, (3a) does not hold for / # 0 and thus only (3b) implies.
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Lemma 2.

1-x471, 4=0

==yt = )
1—2(1)" “( _1_l>7" "' YEGF (q)

lll. The Expanded Formula
For later use, a generalized version of Lemma 1 is first stated and proven.
Lemma 3. For any positive integer m,

-7, Aori =q-1,-"-,i =q-1

)IED SRR

GF'(q) 0, otherwise

Proof. The lemma follows directly from the factorizability property of the summation and by repeated applications of Lemma 1.
For example, when m = 2, one has

22 vi‘7;2= [ 2 72‘] I: 2 7;2]
GF' (@) GF' @

1, i2=q—1

iy )
"Z Y, (fori, =q-1)=

GF' (@) 0, otherwise

0, otherwise

Q.ED.
The following two lemmas and their consequence are also useful.
Lemma 4. Let p be prime and 1 <i<p" - 1 for any integer n > 1. Then,
n
(’? ) =0mod p 4)

Proof. We shall prove the lemma by induction on n. Forn =1,

, an integer

(p) 2o it _pk
i i!
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This implies that #![pk. But i <p and, thus, the ged(i!, p) = 1. Hence, i!|k so that (l?) = p - integer and relation (4) holds.

Hypothesize that relation (4) is true for n. We must now show that it is also true for n + 1. In so doing, express the polynomial
(1 +x)p™* ! in two ways:

pn+1=l7 pn+1 ;
(1 +x) 2 ) (5)

and

7t (6)
It foliows that

(ﬂ;”) S (p) (i?"),ogigpm @)

Let 1 <i<p"!'- 1.IfO<j <p"and
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Then, each term in the sum of (7) is 0 mod p so that

nt+1
(pi )EOmodp

On the other hand, suppose that all the j, are either O or p”. Then, the product in (7) is 1. This can happen only if i = ap”, where
1 <a<<p - 1;in this case, the number of such terms on the right side of (7) is (g), a multiple of p, and thus (4) also follows.

Q.ED.

Lemma 5. Let p be prime, and 0 </ <p" - 1 for any integer n > 0. Then,

<pn; 1) = (-1)' mod p (8)

Proof. It is trivial for the case n= 0. Let n > 1 and use induction on /. Relation (8) is obviously true for / = 0. By the Pascal
triangle relationship, if 0 <i<<p” - 1, then
n _ no_ n
p -1 + [P n _|(r
i i+l i+1

By Lemma 4, the right side is 0 mod p, and the induction hypothesis is (8). Hence, relation (8) is true for the case i replaced by
i+1.

Q.E.D.

By multiplying both sides of relation (8) in Lemma 5 by the quantity (- I)Pn‘l‘ ! and noting the identity + =- for p =2, one
obtains the following corollary.

Corollary 1. Let p be prime and 0 <i<{p”" - 1 for any integer n > 0. Then

-]
(1P -1 (p i ) = lmodp
Since Y971 =1,y € GF'(g), and with Corollary 1, Lemma 2 yields:
Lemma 6. (m
IT10-x7"1, =0 ©a)
m )izl
-1y -
IT0- G-y = <
i=1 m q-1 o
1 - v/'% v€GF'(@ (©b)

\i=1  j=1
With the above theorems and lemmas, one can now state and prove the following expanded formula.
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Theorem 3. For every function F: GF(q)™ - GF(g), there exists a unique function f: [1, - - -,q - 1] - GF(q) such that

(o
)ZZ g ) Flrys e 7,,)

GF(q)
F(xl’...’xm) =
’ a-! q-1 k k
Z Z f(kl"“’km)xll'“xmm
kk1=0 km:O
where
m
N COPRERIC A B § B SR A S L
i=1
m
i -1 .q-1 -1 - :
1+ Z -1y E xl‘?l x]‘.’2 x7h, y=0,1 <j<m
i=1 j<ip< <
= (10a)
m qg-1 .
IT -) v/'xl.vyeEGF@
i=1 j=1
and
k g-1 o
g(vl"",vk’os"',0)=[ﬂ - 7?’“’,-]
=1 j=1
m-k
_ 1\ qg-1,.q9-1 q-1
[1+E 1) E R A
=1 Iy iy <<y (10b)

forany k,1 <k<m,yEGF (q),and k <j, <m

-k
fe,,0,+,0) =~ 25 F(y,,0,---,00y, '
GF'(q)

f(q—1,0,~--,0)=- Z F(')/I,O,"‘,O)

GF (q)
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flg-1,

g~ 1Lk

.,k ):

+1° m

f@@-1,--.9-1

= (-1)™ Z...ZF(,YI,...

" ”ks ‘km
+‘Z...ZF(0,72,“.’7W!)73 "“Ym

GF’'(q)

—1
+ ZT..ZF(,),],O’.YB’...

GF'(q)

’fym)'y33....7 m

" —k3 _km
¥ 2...2}7(71’...,7"1)73 ey

GF'(q)

m—i -k
17 Z"'ZF(O’”"O’%'H" Y )7z+1l+1"'7mm
GF'(a)
m—i-1 N K
F YD F O, 0.7 Yy, Yy ey
GF'(q)
m~i—1 _ ~k
i+1
e T F G0, 0y ) T
GF'(q)
m-i— Ky —k
. ! m
¥ Z ZF(O Yiep 'Y )7x+1 Y ¥
GF'(q)
m-~i—2 —*k.+1 ~k
m
+ Yy Y F Y0 0 Y ) Yy TV |t
GF'(q)

m
- -&
+Z"'ZF(715 77 )7l+1’+1“.7mm

GF'(q)

s Y)

GF (q)

{10¢)

In words, for those coefficients containing no ¢ - 1 as their arguments, we simply expand the function around the point(s)
being considered. For any coefficients contammg q - 1 as its arguments, the function’s “‘initial value(s)” must be included in the
expansion. Finally, the last coefficient f(g -1,

4 q - 1) includes all points, i.e., all function output values, in its expansion.

i} The result follows directly from Theorem 2 and Lemma 6.

it) Coefficients (10c) can be derived from either Theorem 1 or Theorem 2. However, since these two theorems have been

independently proven to be correct (Refs. 2 and 3), the uniqueness of Lagrange’s expansion of m-variable functions (Ref. 4)
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guarantees that they both lead to the same unique function. For simplicity, Theorem 1 will be employed here, together
with Lemma 1 or Lemma 3.

Form=1,
-k
f&) = 25 [FO-Fa)ly, !
GF'(q)
—ky Ky
=FO Y, v '- 2 Fapy
GF'(q) GF'(q)
.
_kl
- 2 F@)y, L0<k <q-1
GF'(q)
- Y Fa )k =a- 1
GF(q)
.
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DD IF(0,0)- F(0,7,)- F(y,,0)+F (v,,7,)] 7:"172 2
GF'(q)

Ky k)

GF'(q) GF'(q)

FO,0)| 25 ﬂk‘ [ > vz_kz]

| GF' (@) GF'(q)
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-
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-
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Therefore,

(" -k, —k,
ZZF(vl,vz)vl v, 5,0<k k,<q-1
GF'(q)

-k -k
2 FO1)7, 2+ 22 FOr)r, 2k =q-1,0<k, <q- 1

GF'(q) GF'(q)
[k, k) =ﬁ
3 ~k
2 Fy,.0)v, '+ 2.0, Fy,r,)y, L0<k <g-1,k,=q-1
GF'(q) GF'(q)
ZZF(*rl,vz),kfqu-l
\. GF (q)

Now, assuming it is true for the m case, we shall show that the m + 1 case follows:

m+1

- 1 .. . t

Fhy ok k) = GO Yy PO Y Vs DYy Y ™ Y
GF'(q)

m+1-1
-k -k -k
- = (- +1 2... +1
fla-Vky ook k 4) = GO > FO. 7 Y V) Y, Yo Vot
GF'(q)
m+1
-k ~-k -k
2 X +1
* ZZ FOG s Y ) Y2 - Y "
GF'(a)
. m+1-2 —k —x K
_ +
fla-1g-Vky, -k ko )= GO 3T FO075 Y Ve ) Vs S Y " Y
GF'(q)
m+1 ¥ _k -k
... +1
LR D DA D A CAREEI A A L Y Vit
GF'(q)

: m+1
Flg-1,.q-1) = CO™ 3 F @ Y Yy

GF'(q)

which are exactly the coefficients (10c) when m + 1 is redefined as m. This completes the proof.

It is not difficult to show that a similar proof of Theorem 3 can also be obtained from Theorem 2, especially for case m = 1.
For case m = 2, from Theorem 2 and Lemma 6, one has
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F(x,, x,) = 22 g 1) F(vys )

GF(q)

= [1-x971-x37 4x971 X371} F(0,0)

ol k&
F[1-x171 D0 -3y, x| FOLyy)

GF'(q) k=1 i
q-1
-1 -k, k
+[1—x‘2’ | Z - Y 1xl1 F(yl,O)
GF'(q) k =1 i

-k, k| q-! -k, K,
* ZZ B Y% - Z Y %, F(vy,)
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o
—

Again, using basic properties of the summation and with some simple manipulation, one obtains

2 -k K _
Flx,x,) =FOO+ Y |- 2 F@,.00, ‘| x'-| 25 F@,,0] %%
k=1 GF'(q) GF(q)
122 -k k
+ - Y FO)Y, 2| x-S FOy) | X!
k,=1 GF'(q) GF(q)
-2 g-2
-k, -k | Kk, K
¥ EZF(71’72)71 2
k=1 k_ =t | GF'(q)

1 2

tor [FOOF 2 FOr)+ 2 Fan0t 20 Flyu)| ximtxa

GF'(q) GF'(q) GF'(q)

which contains exactly the coefficients given in (10c). To complete the proof, an induction on m may be accomplished similar to

the previous case.
Q.E.D.
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IV. Examples

We now provide two examples to illustrate the effectiveness of Theorem 3. For convenience and to the point, let us consider
Example 1 described in Ref. 3. By partitioning as follows,

oLy =y
', x%) = x,
3, x%) =x

2

(xsr x6) = x3

and representing (0, 0) by 0, (0, 1) by 1, (1, 0) by a, and (1, 1) by 8, the given six-input two-output variable function is
represented as shown in Table 1;the all-zero rows are omitted here.

Using Theorem 2 and observing that rows 1, 2, 7 and rows 3, 4, 5, 6 have the values of Xy, X3 Y and X, Xy, respectively, in
common, we obtain

y =B - G, =P (=X {1 -1+ [1- G, - 1T+ [1- (- B° )
-G -] [1- G, =B fo [1-x3] +[1- Gy - DP1+ [1- (- @)+ [1- (- P12
Making use of Lemma 2 and noting the identity += -, y can be simplified as

- 2 3 2 3, 0,2 2.2
= +
Xy tooey Ffxy Hx X, ax,xy + fxyxg * X, HX1X5

2.3 3 3.2 3.3 3 2.3 3.3
+ + + + + + +
oax xo oxix, Bxlx2 XX, H X, X0 Foxixy ﬁx2x3

Now by applying Theorem 3 and Table 2, we can verify the above result termwise as follows:

£0,1,00 = 3, F(0,7,,0)7;' =0+0+f-a=1
GF'(4)
£(0,2,00 = ), F(0,7,,0)7,% = 0+0+f-f=c
GF'(4)
fOL1,0) = 2 F,.1,.07,' 7;' = 0+0+a-g+0+a-Bra+t0+p-a-a=l

GF'(4)
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£3,3,0) = 3 F(y,,7,,0) = 0+0+0+B+0+0+0+B+0+0+0+a+0+0+0+f=1
GF(4)

f0,3,3) = 2 FO,7,,7,) =0+---+0+8+0+0+0=§
GF(4)
£3,3,2) = 3, FOOY)T3+ 2,2, FOv.07+ 2,0, FO,,0,7)77

GF'(4) GF'(4) GF'(4)

+ EZZ 1[7('71")/2’73)'7;2

GF'(4)

[0+0+0] +[0O+---+0+1+0+0+0)+(0+---+0+1+0+0+0)a+(0+ --+0+1+0+0+0)p] =0

As another example, consider the four-input two-output specification given in Table 2 of Ref. 2. Using the same representation
for GF(32),

0=00, 1=a°=10, a=01, * =12, a®* =22, a*=20, ® =02, a®* =21, &’ =11
and the same partition
x = {u,uybox, = {ugutandF={v,v, };
the truth table is obtained as given in Table 3.

Employing Theorem 3 here and Table 1 in Ref. 2, Eq. (16) of Ref. 2 may be verified term by term as follows:

f(,0) = - Z F(~yl,0)7;1=—a—"'-a=—a-a=-a5=a
GF'(9)

F0,3) =- Y, FO)y°=-1---1=-1-1=-a"=1
GF'(9)

FALD) = Y Flpm)r'y' =1

GF'(9)

67 = 2.0, Fapy)r =1

GF'(9)
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The sum of the output functions F results in

F8.8) =23 Flrmy) =1

GF(9)
The remaining 75 terms can be similarly verified to be all zeros. Hence,

- 3 5.7, .88
= + +
flx, x,)=ox, tx tx x, txix, +x/x;

It is evident that employing either Theorem 1 or Theorem 2 to compute F (xl, x2) of the above example would be tedious. This
is especially true for Theorem 2.

Observe that Theorem 3 always requires a fixed number of computations; i.e., g™ computations for m variables over GF (g).
For truth tables whose rows contain a great number of zeros, the technique of Theorem 2 is no worse than that of Theorem 3;in
fact, it is even better at times. However, for large m and large number of nonzero elements in the truth table, the advantage of
Theorem 3 can truly be appreciated. The advantages and disadvantages of Theorem 3 over Theorems 1 and 2 are a subject of
further investigation. But, for now, it is obvious that the technique provided in Theorem 3 is suitable both for hand and computer
calculations.

V. Conclusion

Any Galois switching function can be expressed as the sum of minterms with a set of uniquely defined coefficients, or it can be
expressed as the sum of its output-valued functions with also another set of uniquely defined coefficients. From these two
approaches, we have derived an expanded version of the two methods. With this expanded formula, the function can be obtained
more simply and directly from its given table of description. The novelty of the technique is illustrated by example.
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Table 1. Truth table of six-input two-output variable function

Row X, X, X, y
1 0 B 0 B
2 1 8 0 8
3 [ 8 0 @
4 o 8 1 1
5 a B @ 1
6 ! B8 8 1
7 B 8 0 B

Table 2. Galois field operations

Addition over GF(4)

Multiplication over GF(4)

—
—

™ R

R ™" O =

R

- o W R

O = R ™ T

—
o o o o o

— D

™ R

_ T RO R

8
0
B8
1

R




Table 3. An input-output truth table
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